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Abstract. The phonon dispersion curves of molybdenum at zero temperature as well as at elevated
temperatures are studied, using our recently developed semi-empirical tight-binding model. At zero
temperature the phonon dispersion curves are obtained by frozen-phonon calculations as well as
by a dynamical matrix approach. The phonon frequency shifts due to an increase in temperature
are calculated by molecular dynamics (MD) simulations and the quasiharmonic contribution to the
total frequency shift is determined. An alternative approach for calculating the frequency shifts
without performing MD simulations is also presented.

1. Introduction

The low-temperature phonon spectrum of body-centred cubic (bcc) molybdenum as measured
in inelastic neutron scattering experiments [1–3] exhibits a variety of anomalies: besides
a depression near the symmetry point H and a depression of the [0ξξ ]T2 branch at N, the
longitudinal [ξξξ ] branch does not display the rounded dip nearq = 2

3[111] which is typical
for ‘regular’ monatomic bcc metals (like, for instance, alkali metals [4]). These anomalies
which have been attributed to the electronic features of Mo [5,6], tend to be less pronounced
at elevated temperatures [3].

Theoretical investigations of the temperature dependence of the phonon frequencies of Mo
have so far been restricted to a small temperature range due to their perturbational nature [7]. In
order to calculate phonon properties at higher temperatures, non-perturbative techniques such
as molecular dynamics (MD) simulations are desirable. Because of the apparent influence
of the electronic structure on the vibrational properties of Mo, it is necessary to use a
quantum mechanical description for the interatomic force calculation in the MD simulations.
Furthermore, a computationally efficient force calculation scheme is needed in order to be able
to handle a large enough number of atoms over a sufficiently long period of simulation time.
All of these considerations point towards the use of semi-empirical methods which take into
account the quantum mechanical effects of bonding while being far less time-consuming than
ab initio methods.

Recently, we have developed an environment-dependent tight-binding (TB) parametriz-
ation for molybdenum whose results for bulk, point defect, and surface properties atT = 0 K
are in good agreement withab initio and experimental data [8]. One of the purposes of this
paper is to check whether this TB model can also be used to predict temperature-dependent
properties of molybdenum and to demonstrate the feasibility of MD simulations using the
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environment-dependent TB parametrization for transition metals. To this end, we have
implemented the TB model in a ‘conventional’ MD simulation code and compared the so-
obtained phonon frequencies at elevated temperatures with those obtained by inelastic neutron
scattering experiments.

Another purpose of this paper is to explore a methodically different approach for the
phonon frequency calculation at elevated temperatures. If successful, it would speed up the
calculation of temperature-dependent properties considerably compared to ‘conventional’ MD
simulations.

We start in section 2 with a description of the zero-temperature phonon spectrum, which has
been calculated by frozen-phonon calculations as well as by a dynamical matrix approach [4].
In section 3 we discuss technical details of the MD simulations and compare the MD results
for the temperature-dependent phonon frequencies with experimental data. In section 4 we
describe our alternative approach used for the calculation of the temperature dependence of the
phonon frequencies and compare the results obtained from the various theoretical methods. A
concluding discussion is given in section 5.

2. Phonon properties at zero temperature

As mentioned in the introduction, we will use our recently developed TB model for molyb-
denum for the energy and interatomic force calculations. Details concerning the functional
form and fitting procedures can be found in reference [8]. The use of an environment-dependent
parametrization for the elements of the Hamiltonian matrix as well as the repulsive potential
provides for a good transferability of the TB parameters in our model. Applying the Hellmann–
Feynman theorem, interatomic forces can be calculated easily within the framework of semi-
empirical TB models (see, for instance, reference [9]).

Before applying the TB model in more extensive MD calculations, we first examined
the phonon properties at zero temperature using frozen-phonon calculations. We used three
different supercells for phonon modes with wavevectors along the [ξ00], [ξξ0], and [ξξξ ]
directions. The supercells were stretched along the respective wavevectors to enable them to
accommodate the displacement pattern of long-wavelength phonons. The supercells contained
16 atoms in the case of wavevectors along [ξ00] and [ξξ0], and 24 atoms for wavevectors
along [ξξξ ]. The sizes of these supercells are small enough that we could afford to use as
manyk-points for the Brillouin zone sampling as were necessary to obtain converged phonon
frequencies, except for the H-point phonon (for the problems involved in the calculation of
the H phonon in Mo, see, for instance, reference [10]). With these supercells, phonons with
wavevectorsq = 2π

a
( n8, 0, 0),

2π
a
( n16,

n
16, 0), and 2π

a
( n12,

n
12,

n
12) are accessible, witha and

n standing for the lattice constant and an integer, respectively. The results are displayed
in figure 1, together with the results of inelastic neutron scattering experiments at room
temperature [11]. Despite some minor discrepancies, all of the phonon anomalies mentioned
in the introduction are well reproduced by the TB model.

We have also used a dynamical matrix approach (see, for instance, reference [4]) for the
calculation of the phonon frequencies: a cubic 5× 5 × 5 unit cell (250 atoms) was used
to calculate the force constant matrix by displacing the atom at the centre of the supercell
and calculating the resulting forces on all of the other atoms of the supercell. The phonon
frequencies can then be calculated by diagonalizing the dynamical matrix which is the Fourier
transform of the force constant matrix. The resultant phonon spectrum is very similar to
the one obtained by frozen-phonon calculations except at the H point, as one can see from
the comparison in figure 2. Non-negligible discrepancies indicate the presence of long-range
interactions in Mo: all of the interactions are exactly taken into account by frozen-phonon-type
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Figure 1. Comparison of the phonon frequencies in bcc Mo derived from the TB method (solid
curves) and from inelastic neutron scattering (reference [11]) atT = 296 K. The dots and triangles
represent the experimental data for longitudinal and transverse modes respectively.

Γ H P Γ N
[ξ,0,0] [ξ,ξ,ξ] [ξ,ξ,ξ] [0,ξ,ξ]0.0

2.0

4.0

6.0

8.0

10.0

ν 
[T

H
z] T1

T2

Figure 2. Comparison of the phonon frequencies in bcc Mo derived from the TB calculations using
the dynamical matrix method (solid curves) and the frozen-phonon method (dots and triangles
represent longitudinal and transverse modes respectively).

calculations. The dynamical matrix calculations, however, are subject to finite-size effects, and
physically meaningful interactions can be calculated only up to a certain interatomic distance



5458 H Haas et al

depending on the size of the supercell (in our case, we neglected interactions beyond ninth-
nearest-neighbour interactions). In table 1 we have listed the non-vanishing elements of the
force constant matrix. Comparison with the force constants determined by a direct fit of a
Born–von Ḱarmán model to the experimental phonon spectrum [11] reveals good agreement
for the first two neighbour shells, but there are considerable discrepancies for larger interatomic
distances. This indicates that, for the case of long-range interactions, the force constants are
not uniquely determined by the fit to the experimental phonon spectrum. One can change the
values, especially of the long-range force constants, and keep the shape of the phonon spectrum
nearly unchanged. Another interesting feature is the relatively large values for the fifth-nearest-
neighbour force constants; this has been attributed to the fact that a fifth-nearest-neighbour
pair of atoms in a bcc crystal is coupled by two nearest-neighbour bonds [12].

Table 1. Force constants obtained by the TB model and by fitting a Born–von Kármán model directly
to the experimentally measured phonon spectrum [11]. The Greek indices label the Cartesian
coordinates of thenth-nearest-neighbour force constant.

nκκ ′ TB (N m−1) Fit (N m−1) nκκ ′ TB (N m−1) Fit (N m−1)

1xx 17.37 16.51 7xx 0.53 0.29
1xy 10.70 11.78 7xy 0.87 −0.16
2xx 42.57 44.57 7xz 0.04 −0.06
2yy −4.04 −2.69 7zz −0.05 −0.75
3xx 1.53 3.60 8xx −0.20
3xy −1.35 1.72 8yy −0.05
3zz −5.15 0.69 8zz −0.30
4xx −3.99 −2.65 8xy −0.33
4xy −0.87 0.26 9xx 1.75
4yy 0.45 −0.43 9yy 0.12
4yz 1.29 0.71 9xy 0.75
5xx 4.03 0.57 9yz −0.30
5xy 5.26 0.69
6xx 1.00 3.97
6yy 0.40 0.85

3. Molecular dynamics simulation

The MD simulations were performed under microcanonical conditions using a cubic 3×3×3
unit cell (54 atoms) with periodic boundary conditions. The lattice constant was scaled
according to the experimentally measured thermal expansion coefficients (the linear and
quadratic thermal expansion coefficients are 3.879× 10−6 K−1 and 1.842 K−2 respectively)
[13]. After assigning each atom a random displacement from its perfect bcc position, the
velocities were scaled for several hundred time steps in order to achieve the desired temp-
erature. Thereafter, the temperature control was turned off and the simulation continued for
several hundred time steps before MD data were recorded for later analysis. The phonon
frequencies were calculated by taking the Fourier transform of the velocity–velocity auto-
correlation function [14]

G(q, ω) =
∫

dt eiωt
∑
n

e−iq·Rn
〈vn(t) · v0(0)〉
〈vn(0) · v0(0)〉 (1)

with vn(t) andRn being the velocity at timet and the ideal bcc lattice position of atomn.
The wavevectorq has to be commensurate with the MD box, which, in our case, translates
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into six non-equivalent wavevectorsq = 2π
a
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1
3), and2π

a
( 2

3,
2
3,

2
3). In order to get better statistics, we took the average over the star

of q.
In order to check our MD code, we performed a low-temperature MD simulation at

T = 10 K, using a time step of 2.86× 10−15 s and fourk-points [15] for the band-structure
energy and force calculation. We ran 2048 MD steps, corresponding to a total simulation time
of 5.9 ps. The phonon frequencies obtained by taking the average ofG(q, ω) agreed very
well with those obtained from frozen-phonon-type calculations using the same supercell and
k-point mesh.

To check the convergence of the MD results with respect to the number ofk-points used
for the force and energy calculation, we have compared the phonon frequencies obtained
via frozen-phonon calculations using the above-mentioned 54-atom supercell and fourk-
points with those obtained via frozen-phonon calculations using smaller supercells which
are stretched along the direction of the phonon wavevector in order to accommodate long-
wavelength phonons. For the latter supercells we can afford to use as manyk-points for the
Brillouin zone sampling as are necessary in order to obtain converged results (see reference [8]).
Since the phonon frequencies obtained by using these different supercells andk-point meshes
differ considerably (by much as 0.7 THz for certain phonon modes), we cannot consider our
low-temperature MD results as being converged if only fourk-points are used.

On the other hand, we have performed high-temperature (T = 1200 K) MD simulations
using two differentk-point meshes containing 4 and 32k-points† and a time step of
0.72×10−15 s. We used 16 384 MD steps, corresponding to a total simulation time of 11.7 ps.
The so-obtained frequencies turned out to be in very good agreement (better than±0.1 THz for
all phonon modes), implying that fourk-points are sufficient in order to get converged results
in high-temperature simulations. This finding may be explained by the fact that an increase
in temperature will lead to a smearing out of the Fermi surface due to the thermal motion of
the atoms and fewerk-points are needed for the Brillouin zone sampling in order to take into
account the details of the Fermi surface which are present at low temperatures.

In order to obtain meaningful frequency shifts, which can be compared to experimental
results, the numbers appearing in table 2 were calculated by subtracting the frequencies
obtained byT = 0 K frozen-phonon calculations with convergedk-point sampling from
those obtained by theT = 1200 K, four-k-point MD simulation.

In the quasiharmonic approximation, the temperature dependence of the phonon freq-
uencies is solely due to the effect of thermal expansion; hence phonon–phonon interactions
are neglected. In order to study the quasiharmonic contribution to the total frequency shift
as obtained by our MD simulations, we performed frozen-phonon calculations at exactly the
same lattice constants as those used in our high-temperature MD simulations, and the same 54-
atom supercell. For these calculations we have used enoughk-points to ensure convergence.
The results can be seen in table 2. Obviously, the quasiharmonic contributions to the total
frequency shift vary for different phonon modes.

4. An alternative approach

Running a conventional MD simulation using a semi-empirical TB scheme for the force
calculation still represents a time-consuming undertaking, particularly if one needs to be
concerned about using enoughk-points to ensure the convergence of the results. Therefore, it

† The 32K-points consist ofK1 = 2π
L
( 1

8 ,
1
8 ,

1
8), K2 = 2π

L
( 3

8 ,
1
8 ,

1
8), K3 = 2π

L
( 3

8 ,
3
8 ,

1
8), K4 = 2π

L
( 3

8 ,
3
8 ,

3
8) and

their stars under the cubic symmetry.L is the dimension of the cubic supercell used in the simulations.
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Table 2. The frequency shift (THz) for an increase of temperature from 295 K to 1203 K (exp-
eriment) and from 0 K to 1200 K (TB calculations). The TB results represent the frequency
shifts calculated by using equation (1) (MD), assuming the quasiharmonic approximation (QH)
and performing frozen-phonon calculations on the configurations generated by equation (2) (CA).

Tight binding

Mode Experiment MD QH CA

2π
a
( 1

3 , 0, 0)L −0.34 −0.28 −0.28 −0.24

2π
a
( 1

3 , 0, 0)T −0.11 −0.16 −0.13 −0.17

2π
a
( 2

3 , 0, 0)L −0.54 −0.70 −0.32 −0.58

2π
a
( 2

3 , 0, 0)T −0.10 −0.68 −0.29 −0.62

2π
a
(1, 0, 0) + 0.20 −0.21 −0.26 −0.09

2π
a
( 1

3 ,
1
3 , 0)L −0.32 + 0.05 −0.34 + 0.01

2π
a
( 1

3 ,
1
3 , 0)T1 −0.50 −0.37 −0.22 −0.43

2π
a
( 1

3 ,
1
3 , 0)T2 −0.21 −0.46 −0.20 −0.27

2π
a
( 1

3 ,
1
3 ,

1
3)L −0.27 −0.23 −0.39 −0.15

2π
a
( 1

3 ,
1
3 ,

1
3)T −0.47 −0.46 −0.24 −0.46

2π
a
( 2

3 ,
2
3 ,

2
3)L −0.65 −0.86 −0.25 −0.64

2π
a
( 2

3 ,
2
3 ,

2
3)T −0.33 −0.31 −0.32 −0.19

would be highly desirable to have an alternative method for calculating the phonon frequencies
at non-zero temperatures without actually running MD simulations. In this section, we will
investigate an approach based on an ensemble average scheme which would render MD simul-
ations altogether needless, and thus reduce computation time considerably.

This attempt consists of three steps:

(a) Generate an ensemble of atomic configurations according to a well-defined recipe, which
can be thought of as taking snapshots during the course of a regular MD simulation at a
given temperature.

(b) Perform frozen-phonon calculations on each configuration, by assigning to each atom a
displacement vector according to the phonon mode under investigation in addition to the
displacement from the ideal bcc position due to thermal movement.

(c) Take the average of the so-obtained phonon frequencies.

The recipe for generating the atomic configurations is as follows. We describe the thermal
displacement of each atomn by a displacement vectorun from its ideal bcc lattice position
Rn, given by

un =
∑
qλ

uqλ(T )eqλ exp(i(q ·Rn + δqλ)) (2)

whereeqλ stands for the normalized eigenvector of phonon modeqλwith q andλ denoting the
wavevector and polarization, respectively. The sum runs over all phonon modesqλ which are
commensurate with our 54-atom supercell. The so-obtained configurations can be conceived
as superpositions of frozen phonons withδqλ chosen randomly. The temperature enters via a
temperature-dependent displacement amplitudeuqλ(T ) which has been calculated according
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to

uqλ(T ) =
√
kBT

mω2
qλ

. (3)

The anharmonicity of the potential was taken into account by displacing the atoms both
in positive and negative directions and taking the average over the energy differences of these
two calculations. The numbers appearing in table 2 represent again the averages over at least
50 configurations. Performing frozen-phonon calculations on an ensemble of configurations
obtained by actually saving configurations during the course of an MD simulation results in
similar values for the phonon frequencies, which justifies the use of equation (2).

5. Discussion

First, we compare the frequency shift calculated via the velocity–velocity autocorrelation
function with the ones obtained by inelastic neutron scattering. As one can see from table 2, the
overall tendency observed in inelastic neutron scattering experiments, namely the weakening
of the phonon anomalies as the temperature increases, is very well reproduced by the MD
results. A frequency shift at elevated temperatures can be attributed basically to three different
mechanisms:

(a) Thermal expansion will lead to a change of force constants and hence to a change in
phonon frequencies. Thisquasiharmoniccontribution to the total frequency shift has
been calculated in the previous section.

(b) Another contribution comes from anharmonic phonon–phonon interactions which become
more important as the temperature increases.

(c) Finally, non-adiabatic and many-body effects which are beyond the scope of the local
density approximation (LDA) may contribute to a frequency shift [16].

The effects of lattice expansion as well as anharmonic phonon–phonon interactions are taken
into account by the MD simulations, whereas non-adiabatic and many-body effects are not
included, since our model is based on LDA calculations. Non-negligible differences between
the experimentally observed frequency shifts and the MD results may hence be interpreted as
a strong hint that those effects may play an important role in Mo.

When comparing the results obtained by means of conventional MD simulations via the
velocity–velocity autocorrelation function with those obtained by performing frozen-phonon
calculations on configurations created by using equation (2), one has to be well aware of the
fact that these results are converged only up to±0.1 THz with respect to the number ofk-points
used for the Brillouin zone sampling. Thus, the agreement of the frequency shifts obtained
by the two different techniques is satisfactory. However, if the absolute frequency shift is of
about the same order of magnitude as the uncertainty due to the use of a limited number of
k-points, it might become necessary to use a denser grid ofk-points.
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